
Monitoring Analysis Steps 1

Monitoring Analysis Steps
Tables are orange Columns are blue SQL commands are in pink

Table of Contents

First, you will need to enter the SQL edit mode using Microsoft Access. To do this, go to the Create
tab and click on the icon that says Query Design. This icon will have a tabular grid, and a couple
little rulers in the bottom left.

Microsoft Access will first show you the visual query design maker.

Table of Contents
Why not store the data as one spreadsheet?

I can calculate the relative abundace using this formula:
I can import A3 as a csv file into postgres like this:
Find the average hits per quadrat at each plot using this code:
Analyzing an individual plant species
Select all species in a season and plot
Analyzing average hits per quadrat at each plot
Analyzing which species stay the same between two species lists
Analyzing the difference between two species lists

Monitoring Analysis Steps 2

On the top left, click "SQL view".

We will be using the INTO command to create new tables with combined data from multiple tables.
You can preview the result with "View", and you can actually create the new table using "Run."

Monitoring Analysis Steps 3

This first command is creating the first analysis table A1, which is a new analysis table that is
created by attatching (using an SQL JOIN) the Jepson Species information to table containing
information about the number of hits per plant in each plot.

The join is connected using the species ID, meaning the species code stored in the tbl_Quadrat_Hits
table is also stored on the lookup table tlu_eJepson.

SELECT
tbl_Quadrat_Hits.EventID,
tbl_Quadrat_Hits.Dead,
tbl_Quadrat_Hits.Unrooted,
tbl_Quadrat_Hits.HitsinQuadrat,
tlu_eJepson.family,
tlu_eJepson.genus,
tlu_eJepson.species,
tlu_eJepson.nativity

INTO
A1

FROM
tbl_Quadrat_Hits

LEFT JOIN
tlu_eJepson

ON
tlu_eJepson.PlantSpeciesID = tbl_Quadrat_Hits.SpeciesID;

After you hit "Run" you should see a pop-up asking if you are sure, then when you approve, you will
see the new table visible in the list of tables (All Access Objects) on the left-hand side of the screen.

Here is my table A1:

Monitoring Analysis Steps 4

Why not store the data as one spreadsheet?

🖥 Storing the actual name and citation info about each species in the tlu_eJepson table will
make it easier for future updates to be made to the species list. Because species are
collected in multiple types of surveys, there are many tables that use the species data. If
there is a change, storing the species data as a code in each of the individual tables and
storing the actual data in a lookup table means that if there is an update, the species data
do not have to be repeatedly changed in multiple tables.

The next command brings in information from tblEvents, to form the next temporary analysis table
A2. This table will look similar to A1, but also include the transect, plot ID, and Event Group ID.

SELECT

tblEvents.transect,
tblEvents.LocationID,
tblEvents.EventGroup,
A1.Dead,
A1.Unrooted,
A1.HitsInQuadrat,
A1.family,
A1.genus,
A1.species,
A1.nativity

INTO
A2

FROM
A1

LEFT JOIN
tblEvents

ON
A1.EventID = tblEvents.EventID;

Monitoring Analysis Steps 5

Here is my table A2:

There is still one column with unhelpful data. The EventGroup column has numbers that reference
the table tblEventGroup, where data about each monitoring season is stored:

A third join is needed to show the EventGroupName in the table.

SELECT
tblEventGroup.EventGroupName,
A2.transect,
A2.LocationID,
A2.Dead,
A2.Unrooted,
A2.HitsInQuadrat,
A2.family,
A2.genus,
A2.species,
A2.nativity

INTO
A3

FROM
A2

LEFT JOIN
tblEventGroup

Monitoring Analysis Steps 6

ON
A2.EventGroup = tblEventGroup.EventGroupID;

Here is my table A3:

This table can now be analyized using filters, sorts, and aggregate functions.

I want to create lists comparing the species present at each spot, from year to year, and comparing
the relative abundance.

I can calculate the relative abundace using this formula:

🔢 RA = TS / TP *100

Where RA is the relative abundance of species (%)

TS is the total number of species in an area

TP is the total sum of the populations of all species in the area

https://calculator.academy/relative-abundance-calculator/'

https://www.biology-fieldwork.org/a-level/fieldwork-techniques/vegetation-sampling/using-quadrats/

I can import A3 as a csv file into postgres like this:
https://www.postgresqltutorial.com/import-csv-file-into-posgresql-table/

https://calculator.academy/relative-abundance-calculator/
https://www.biology-fieldwork.org/a-level/fieldwork-techniques/vegetation-sampling/using-quadrats/
https://www.postgresqltutorial.com/import-csv-file-into-posgresql-table/

Monitoring Analysis Steps 7

I use postgres for complex SQL queries because it will clearly print out exactly where there is an
error, if the code does not work.

Find the average hits per quadrat at each plot using this code:

select genus, species, nativity, (sum(hitsinquadrat)/3) as plantavg from tbl_A3
where eventgroupname = 'Spring_2020'
and locationid= 'MGP_01_HWY'
group by genus, species, nativity
order by plantavg desc;

My results:

Change the eventgroupname to assess a different year, and change the locationid to assess a
different location.

Analyzing an individual plant species

select locationid, eventgroupname, (sum(hitsinquadrat)/3) as hits
from tbl_A3
where genus = 'Brachypodium'
and species = 'distachyon'
group by locationid, eventgroupname

Monitoring Analysis Steps 8

order by eventgroupname
;

This returns the average hits at each quadrat per plot for each year, per species.

 In order to make it easier to analyze data by species, I need to fix the concatinization issue in my
spreadsheet. Currently, unknown plant species data aren't stored in the very useful
name_minus_authors column in tlu_eJepson. This will also allow me to analyze data by
subspecies, and by individual "unknowns" rather than the currently very unhelpful and identical
UNKNOWN POACEAEs floating around.

Select all species in a season and plot

select distinct genus, species, nativity from tbl_A3
where eventgroupname = 'Spring_2021'
and locationid= 'MGP_02_OLH'
order by nativity asc;

Select genus, species, and nativity from the desired season and plot, and they will be displayed in
group according to their nativity status.

Analyzing average hits per quadrat at each plot

select nativity, eventgroupname, locationid, (sum(hitsinquadrat)/3) as hits
from tbl_A3
where eventgroupname ='Spring_2020'
and locationid = 'MGP_01_HWY'

Monitoring Analysis Steps 9

group by nativity, eventgroupname, locationid
order by eventgroupname, locationid
;

Analyzing which species stay the same between two species
lists

with table2020 as (
select genus, species from tbl_a3
where eventgroupname = 'Spring_2020'
and locationid = 'MGP_01_HWY'
),

table2021 as(
select genus, species from tbl_a3
where eventgroupname = 'Spring_2021'
and locationid = 'MGP_01_HWY'
)

select distinct table2021.genus, table2021.species from table2021
inner join table2020
on table2021.genus = table2020.genus and table2021.species = table2020.species;

Using the WITH command, create two temporary tables for the two species lists. Then do an inner
join on the two tables.

Analyzing the difference between two species lists

with table2020 as (
select genus, species from tbl_a3
where eventgroupname = 'Spring_2020'
and locationid = 'MGP_01_HWY'
),

Monitoring Analysis Steps 10

table2021 as (
select genus, species from tbl_a3
where eventgroupname = 'Spring_2021'
and locationid = 'MGP_01_HWY'
)

SELECT DISTINCT table2021.genus, table2021.species
FROM table2021
 LEFT JOIN
 table2020 ON table2020.species=table2021.species and
table2020.genus=table2021.genus
WHERE table2020.species IS NULL;

Using the with command, create two temporary tables for the two species list, as above. This time,
do a left join and return the NULL values from this join. The left join will join two tables, and any table
on the righthand table that does not match values in the lefthand table will be returned as NULL.
This returns the new species found in 2021 (where table2020.species is NULL on the join).

 Review this code, because I don't entirely understand how it works. I found it on this post:

Compare two tables and give the output record which does not exist in 1st table

I want an SQL code which should perform the task of data scrubbing. I have two tables
both contain some names I want to compare them and list out only those name which are
in table 2 but not in ta...

https://stackoverflow.com/questions/18649500/compare-two-tables-and-give-the-outp
ut-record-which-does-not-exist-in-1st-table/18649525

https://stackoverflow.com/questions/18649500/compare-two-tables-and-give-the-output-record-which-does-not-exist-in-1st-table/18649525

